Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex
نویسندگان
چکیده
Noradrenergic modulation from the locus coerulus is often associated with the regulation of sensory signal-to-noise ratio. In the olfactory system, noradrenergic modulation affects both bulbar and cortical processing, and has been shown to modulate the detection of low concentration stimuli. We here implemented a computational model of the olfactory bulb and piriform cortex, based on known experimental results, to explore how noradrenergic modulation in the olfactory bulb and piriform cortex interact to regulate odor processing. We show that as predicted by behavioral experiments in our lab, norepinephrine can play a critical role in modulating the detection and associative learning of very low odor concentrations. Our simulations show that bulbar norepinephrine serves to pre-process odor representations to facilitate cortical learning, but not recall. We observe the typical non-uniform dose-response functions described for norepinephrine modulation and show that these are imposed mainly by bulbar, but not cortical processing.
منابع مشابه
Synaptic adaptation and odor-background segmentation.
Habituation is a form of non-associative memory that plays an important role in filtering stable or redundant inputs. The present study examines the contribution of habituation and cortical adaptation to odor-background segmentation. Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system. Recent electrophysiological data have...
متن کاملConvergence in the Piriform Cortex
How are the responses to distinct chemical features integrated to form an olfactory perceptual object? In this issue of Neuron, Davison and Ehlers show that individual piriform cortex neurons receive convergent input from up to 10% of main olfactory bulb glomeruli and are activated by specific spatial patterns of coactive glomeruli.
متن کاملOdor-specific habituation arises from interaction of afferent synaptic adaptation and intrinsic synaptic potentiation in olfactory cortex.
Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between the olfactory bulb outputs and piriform cortex pyr...
متن کاملPyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli.
Pyramidal cells in piriform cortex integrate sensory information from multiple olfactory bulb mitral and tufted (M/T) cells. However, whether M/T cells belonging to different olfactory bulb glomeruli converge onto individual cortical cells is unclear. Here we use calcium imaging in an olfactory bulb-cortex slice preparation to provide direct evidence that neurons in piriform cortex receive conv...
متن کاملReceptive fields in the rat piriform cortex.
Current models of odor discrimination in mammals involve molecular feature detection by a large family of diverse olfactory receptors, refinement of molecular feature extraction through precise projections of olfactory receptor neurons to the olfactory bulb to form an odor-specific spatial map of molecular features across glomerular layer, and synthesis of these features into odor objects withi...
متن کامل